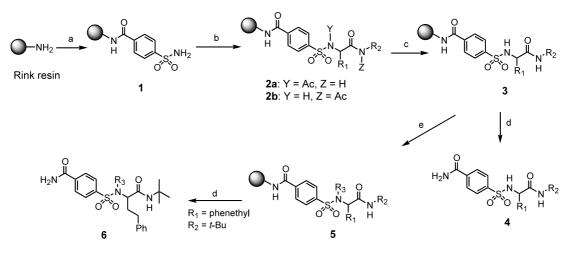


Tetrahedron Letters 43 (2002) 8467-8470

Solid-phase synthesis of α -sulfonylamino amide derivatives based on Ugi-type condensation reaction using sulfonamides as amine input[†]


Eugene Campian, Boliang Lou* and Hossain Saneii

Advanced SynTech, LLC, 9800 Bluegrass Parkway, Louisville, KY 40299 USA Received 19 September 2002; accepted 23 September 2002

Abstract—A method for solid-phase synthesis of α -sulfonylamino amides has been developed, which relies on a new Ugi-type 4-component condensation reaction involving arylsulfonamides as an amine input followed by removal of the acid moiety under the basic conditions. Either polymer-bound sulfonamides or carboxylic acids can be used in this reaction to afford structurally diverse products with good purity and in moderate to excellent yield. © 2002 Elsevier Science Ltd. All rights reserved.

The importance of multi-component reactions (MCR) has received increasing attention due to the recent emergence of combinatorial chemistry technology.¹ These reactions enable to introduce three or more different building blocks, in most cases, in a single chemical step to give products with multiple diversity points. The Ugi condensation reaction employs four

components including a carboxylic acid, an amine, an aldehyde and an isocyanide to construct an α -acylamino amide in one step, which can subsequently be converted into the corresponding amino acid, ester, lactam, lactone, etc.^{2,3} The versatility of the reaction has also been demonstrated in the solid-phase syntheses of a variety of biologically interesting heterocyclic

Scheme 1. Reagents and conditions: (a) 4-carboxybenezenesulfonamide (6 equiv.), DIC (6 equiv.) and HOBt (6 equiv.), DCM/DMF, 2 h; (b) R_1 CHO (10 equiv.), AcOH (10 equiv.), R_2 NC (10 equiv.), MeOH/THF (1:1), 60°C, 24 h; (c) 40% aq. MeNH₂/THF (v/v, 1:1), rt, overnight; (d) 25% TFA in DCM, rt, 30 min; (e) R_3 OH (10 equiv.), PPh₃ (10 equiv.), DIAD (10 equiv.), THF, rt, 2 h.

Keywords: solid-phase synthesis; multi-component condensation reaction; sulfonamide.

^{*} Corresponding author. Tel.: 502-499-0122; fax: 502-499-0078; e-mail: b.lou@advsyntech.com

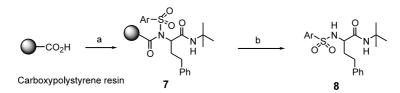
[†] This work was presented at the 220th National Meeting of American Chemical Society, Washington, DC, August 20–24, 2000, Abstract ORGN 0227.

structures via post-Ugi transformations.⁴ Our interest in broadening the scope of the known reaction and developing efficient methods for parallel synthesis of structurally diverse α -sulfonylamino amide derivatives⁵ prompted us to investigate the condensation reaction in the presence of sulfonamides instead of amines.

The reactivity of the sulfonamides towards the Ugi-type condensation was initially examined in solution phase. p-Toluenesulfonamide was treated with HOAc (1 equiv.), hydrocinnamaldehyde (1 equiv.) and t-butyl isocyanide (1 equiv.) in THF and MeOH (v/v, 1:1) for 3 days to give a complex mixture with a majority of the unreacted sulfonamide and a trace amount of the desired four-component condensation product. This result encouraged us to attempt the solid-phase approach.

As shown in Scheme 1, resin-bound benzenesulfonamide 1 was prepared by coupling 4-carboxybenzenesulfonamide onto Rink resin⁶ by using the DIC/HOBt coupling protocol. Subsequently, it was treated with HOAc (10 equiv.), hydrocinnamaldehyde (10 equiv.) and *t*-butyl isocyanide (10 equiv.) in the same solvent system (THF/MeOH, 1:1) at rt for 3 days. The formation of the desired product was unambiguously confirmed by LC–MS analysis upon cleavage with 20%

Table 1.


TFA in DCM, however, most of the starting sulfonamide was recovered. The reaction was then examined at 60°C for 24 h to give a mixture of the expected Ugi-products, *N*-acetyl α -sulfonylamino amides (**2a** and/or **2b**), and a small amount of deacetylated product **3**. The acetyl moiety on the products **2a** and/or **2b** was readily removed by treating the resin with a 1:1 mixture of 40% aq. MeNH₂ and THF, leading to the complete conversion into the resin-bound sulfonamides **3**. The corresponding α -sulfonylamino amides **4** were obtained upon cleavage from the resin by the standard TFA treatment.

The above condition was found to be applicable for a broad range of aldehydes and isocyanides as illustrated in Table 1 (4a-j,⁷ entries 1–10). More importantly, the diversity of the products was further expanded by *N*-alkylation of 3 with various alcohols under the Mitsunobu conditions to afford *N*-alkylated products 5 which were then cleaved by TFA to give the products 6 in good yield as exemplified by $6a-c^8$ in Table 1 (entries 11–13).

An alternative approach was examined with a polymerbound carboxylic acid in this new condensation reaction. Carboxypolystyrene⁶ was treated with various arylsulfonamides in the presence of hydrocinnamalde-

Entry	1		Product		Purity ^c	Yield	Entry		Product	Purity ^c	Yield
1	4a	R ₁ =	Ph	$R_2 = \rightarrow \frac{2}{5}$	90%	89% ^b	10	4j	$R_1 = Ph_{response}$ $R_2 = \sum_{i=1}^{n} \xi_i$	70%	87% ^a
2	4b	R ₁ =		R₂ = → ₹	95%	>95% ^a	11	6a	R ₃ = Me	85%	82% ^b
3	4c	R ₁ =	MeO-	$R_2 = \frac{1}{2} \frac{3}{5}$	90%	>95% ^a	12	6b	R ₃ = ^{Ph} 0	85%	83% ^b
4	4d	R ₁ =		$R_2 = \rightarrow \frac{2}{\xi}$	60% ^d	>90% ^a (63% ^b)	13	6c	$R_3 = \frac{Ph_{3}}{\sqrt{3}}$	60%	77% ^a
5	4e	R ₁ =	CF₃-∕ş	R₂ = → ξ	90%		14	8a	Ar =	65%	52% ^b
6	4f	R ₁ =	F-	R₂ = → ξ	95%	90% ^b	15	8b	$Ar = O_2 N - _{\xi}$	75%	87% ^b
7	4g	R ₁ =	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$R_2 = \frac{1}{2}$	95%	90% ^b	16	8c	Ar =	75%	93% ^b
8	4h	R ₁ =	Ph	R ₂ =	-§ 75%	60% ^b	17	8d	Ar = MeO-	80%	90% ^b
9	4i	R ₁ =	Ph	R 2 = Ph √	5 60 %	40% ^b	18	8e	Ar = AcHN	85%	80% ^b

^a determined by weight of the crude products based on the loading of the resins. ^b isolated yields. ^c deterimined by LC-MS using both UV and ELS detectors; further confirmed by ¹HNMR analysis. ^d a significant amount of unreacted sulfonamide recovered.

Scheme 2. Reagents and conditions: (a) hydrocinnamaldehyde (10 equiv.), arylsulfonamide (10 equiv.) and t-butyl isocyanide (10 equiv.), THF/MeOH, 60°C, 24 h; (b) 40% aq. MeNH₂/THF (v/v, 1:1), rt, overnight.

hyde and *t*-butyl isocyanide at 60°C for 24 h in the same solvent system (THF/MeOH) as illustrated in Scheme 2. A traceless cleavage strategy was applied by treating the resin 7 with MeNH₂ in H₂O/THF to release the desired α -sulfonylamino amide derivatives 8 which are structurally complementary to the products obtained from the first approach described in Scheme 1. A set of representative examples is shown in Table 1 (8a–e,⁹ entries 14–18).

In conclusion, an efficient method for the solid-phase construction of α -sulfonylamino amides has been developed by utilizing arylsulfonamides instead of amines in the Ugi four-component condensation reaction. These two approaches, utilizing polymer-bound arylsulfonamides and carboxylic acids, allow a quick access to the corresponding compound libraries with a high degree of structural diversity. The further chemical manipulation leading to other biologically important core structures is under investigation.

Acknowledgements

The authors would like to thank Ms. Michelle Richards for providing analytical support and Dr. Adnan Mjalli for his suggestions at the initial stage of the work.

References

- 1. Weber, L. Drug Disc. Today 2002, 7, 143-147.
- 2. For a recent review, see: Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168–3210.
- For representative examples, see: (a) Demharter, A.; Hörl, W.; Herdtweck, E.; Ugi, I. Angew. Chem., Int. Ed. 1996, 35, 173–175; (b) Keating, T. A.; Armstrong, R. W. J. Am. Chem. Soc. 1996, 118, 2574–2583; (c) Park, S. J.; Keum, G.; Kang, S. Bang.; Koh, H. Y.; Kim, Y.; Lee, D. H. Tetrahedron Lett. 1998, 39, 7109–7112; (d) Zhang, J.; Jacobson, A.; Rusche, J. R.; Herlihy, W. J. Org. Chem. 1999, 64, 1074–1076; (e) Gedey, S.; Van der Eycken, J.; Fülöp, F. Org. Lett. 2002, 4, 1967–1969.
- For representative examples, see: (a) Zhang, C.; Moran, E. J.; Woiwode, T. F.; Short, K. M.; Mjalli, A. M. M. *Tetrahedron Lett.* **1996**, *37*, 751–754; (b) Szardenings, A. K.; Burkoth, T. S.; Lu, H. H.; Tien, D. W.; Campbell, D. A. *Tetrahedron* **1997**, *53*, 6573–6593; (c) Lee, D.; Sello, J. K.; Schreiber, S. L. Org. Lett. **2000**, *2*, 709–712; (d) Hulme, C.; Ma, L.; Kumar, N. V.; Krolikowski, P. H.; Allen, A. C.; Labaudiniere, R. *Tetrahedron Lett.* **2000**, *41*, 1509–1514.

- For very recent examples of bioactive peptidomimetics containing α-sulfonylamino amide moieties, see: (a) Das, J. Kimball, S. D.; Reid, J. A.; Wang, T. C.; Lau, W. F. Roberts, D. G. M.; Seiler, S. M.; Schumacher, W. A.; Ogletree, M. L. *Bioorg. Med. Chem. Lett.* 2002, *12*, 41–44; (b) Lin, L. S.; Kopka, I. E.; Mumford, R. A.; Magriotis, P. A.; Lanza, T., Jr.; Durette, P. L.; Kamenecka, T.; Young, D. N.; de Laszlo, S. E.; McCauley, E.; Van Riper, G.; Kidambi, U.; Egger, L. A.; Tong, X.; Lyons, K.; Vincent, S.; Stearns, R.; Colletti, A.; Teffera, Y.; Fenyk-Melody, J.; Schmidt, J. A.; MacCoss, M.; Hagmann, W. K. *Bioorg. Med. Chem. Lett.* 2002, *12*, 611–614.
- 6. Advanced ChemTech, Louisville, KY (800) 456-1403.
- 7. General procedures for the preparation of compounds **4a-j**:

Aminosulfonylbenzamide Rink resin 1 (1 g, 0.5 mmol /g) in a 40 mL vial was swelled with 2.5 mL of THF. To this mixture were then added solutions of 1 M hydrocinnamaldehyde in MeOH (5 mL, 10 equiv.), 1 M AcOH in THF (5 mL, 10 equiv.) and 2 M t-butyl isocyanide in MeOH (2.5 mL, 10 equiv.). The suspension was mixed on an ACT Labmate⁶ at 60°C for 24 h. The resin was filtered, washed with DMF $(3\times)$, MeOH $(3\times)$ and DCM $(3\times)$. After drying, the resin was treated with a mixture of 40% aq. MeNH₂ and THF (10 mL, 1:1) at rt overnight. The resin was filtered, washed as usual and dried in vacuo (1.15 g). The dried resin 3a (115 mg) was treated with 25% TFA in DCM for 30 min. The cleavage solution was evaporated to give a residue which was re-dissolved in acetonitrile. The solvent was then removed on a rotavapor to give the crude product (25.4 mg), which was purified by preparative TLC to give the pure product (18.6 mg, 89% yield). ¹H NMR (CD₃OD): 4a: δ 7.94–8.11 (m, 4H), 7.10–7.32 (m, 5H), 3.78-3.85 (m, 1H), 2.73 (m, 1H), 2.61 (m, 1H), 1.94 (m, 1H), 1.86 (m, 1H), 1.15 (s, 9H). **4h**: δ 8.00 (d, J = 8.5 Hz, 2H), 7.86 (d, J=8.5 Hz, 2H), 7.09–7.24 (m, 5H), 3.75–3.77 (dd, 1H), 3.28 (m, 1H), 2.63-2.68 (m, 1H), 2.49-2.55 (m, 1H), 0.90–1.90 (m, 12H). 4i: 7.98 (d, J=8 Hz, 2H), 7.91 (d, J=8 Hz, 2H), 7.03–7.27 (m, 10H), 4.16 (d, J=12 Hz, 1H), 4.10 (d, J=12 Hz, 1H), 3.81 (m, 1H), 1.35 (m, 2H), 0.92 (m, 2H).

8. General procedures for the preparation of compounds **6a–c**:

To the above resin-bound product **3a** (200 mg, ~ 0.087 mmol) placed in an 8 mL vial, were added solutions of 2 M methanol in THF (10 equiv.), 1 M triphenylphosphine in THF (10 equiv.) and 1 M DIAD in THF (10 equiv.). The suspension was mixed on an ACT Labmate at rt for 5 h. The resin was filtered, washed as usual and dried. The obtained resin was treated with 25% TFA in DCM for 30 minutes. The cleavage solution was evaporated to give a residue which was re-dissolved in acetonitrile. The solvent was then removed on a rotavapor to give the crude

product **6a** (85% purity), which was purified by preparative TLC to give the pure product (30.7 mg, 82% yield). ¹H NMR (CD₃OD): δ 8.04 (d, J = 7 Hz, 2H), 7.89 (d, J = 7 Hz, 2H), 7.11–7.38 (m, 5H), 4.38 (t, 1H), 3.00 (s, 3H), 2.50 (t, 2H), 1.97–2.01 (m, 1H), 1.70–1.74 (m, 1H), 1.21 (s, 9H). **6b**: δ 8.00 (d, J = 8 Hz, 2H), 7.88 (d, J = 8 Hz, 2H), 6.99–7.32 (m, 10H), 4.45–4.53 (dd, J = 11.50 Hz, 2H), 4.21–4.24 (m, 1H), 3.80 (m, 1H), 3.68 (m, 2H), 3.53–3.56 (m, 1H), 1H), 2.46 (m, 2H), 2.06 (m, 1H), 1.68 (m, 1H), 1.21 (s, 9H).

9. General procedures for the preparation of compounds 8a-e: To carboxypolystyrene resin (100 mg, 1 mmol/g) were added solutions of 1 M benzenesulfonamide in THF (1 mL, 10 equiv.), 2 M hydrocinnamaldehyde in MeOH (0.5 mL, 10 equiv.) and 2 M t-butyl isocyanide in MeOH (0.5 mL, 10 equiv.). The suspension was mixed on an ACT Labmate at 60°C for 24 h. The resin was filtered, washed as usual and dried. The resin was then treated with a mixture of 40% aqueous methylamine and THF (1:1, 2 mL) at rt for 12 h. The resin was filtered and rinsed with THF (4 mL). The combined filtrates were concentrated to give the crude product **8a** (65% purity), which was purified by preparative TLC to give the pure product (19.4 mg, 52% yield). ¹H NMR (CD₃OD): δ 7.53–7.87 (m, 5H), 7.08–7.24 (m, 5H), 3.74 (t, 1H), 2.64 (m, 1H), 2.48 (m, 1H), 1.86 (m, 1H), 1.75 (m, 1H), 1.14 (s, 9H). **8b**: δ 8.35–7.13 (m, 9H), 3.894 (m, 1H), 2.64 (m, 1H), 2.69 (t, 2H), 2.01 (m, 1H), 1.82 (m, 1H), 1.75 (m, 1H), 1.36 (s, 9H). **8c**: δ 8.08 (d, J=8 Hz, 1H), 7.91 (d, J=8 Hz, 1H), 7.74–7.83 (m, 2H), 7.13–7.25 (m, 5H), 3.92 (m, 1H), 2.71 (m, 1H), 2.58 (m, 1H), 1.95 (m, 1H), 1.88 (m, 1H), 1.11 (s, 9H).